The integrating factor of the differential equation $(y \log_ey)\frac{dy}{dx}+x=2\log_ey$ is: |
$y$ $\frac{1}{y}$ $\log_ey$ $\log_e(\log_ey)$ |
$\log_ey$ |
The correct answer is Option (3) → $\log_ey$ $(y \log_ey)\frac{dy}{dx}+x=2\log_ey$ $⇒\frac{dy}{dx}+\frac{1}{y\log_ey}x=\frac{2}{y}$ $⇒\frac{dy}{dx}=\frac{2\log_ey-x}{y\log_ey}$ $⇒\frac{dx}{dy}=\frac{y\log_ey}{2\log_ey-x}$ $⇒\frac{dx}{dy}+\frac{1}{y\log_ey}x=\frac{2}{y}$ $e^{\int\frac{1}{y\log_ey}dy}=e^{\log_e(\log_ey)}+C$ $I.F.=e^{\log_e(\log_ey)}$ $=\log_ey$ |