A silicon specimen is made into a P-type semi-conductor by doping, on an average, one Indium atom per $5×10^{7}$ silicon atoms. If the number density of atoms in the silicon specimen is $5×10^{28} atoms/m^3$, then the number of acceptor atoms in silicon will be |
$2.5×10^{30} atoms/cm^3$ $1.0×10^{13} atoms/cm^3$ $1.0×10^{15} atoms/cm^3$ $2.5×10^{36} atoms/cm^3$ |
$1.0×10^{15} atoms/cm^3$ |
Number density of atoms in silicon specimen = $5×10^{28} atoms/m^3 = 5×10^{22} atom/cm^3$ Since one atom of indium is doped in $5×10^7$ Si atom. So number of indium atoms doped per cm-3 of silicon. $n=\frac{5×10^{22}}{5×10^{7}}=1×10^{15} atoms/cm^3$ |