The differential equation for $y=A \cos (\alpha x)+B \sin (\alpha x)$, where A and B are arbitrary constants is: |
$\frac{d^2 y}{d x^2}+\alpha^2 y=0$ $\frac{d^2 y}{d x^2}-\alpha^2 y=0$ $\frac{d^2 y}{d x^2}+\alpha y=0$ $\frac{d^2 y}{d x^2}-\alpha y=0$ |
$\frac{d^2 y}{d x^2}+\alpha^2 y=0$ |
The correct answer is Option (1) → $\frac{d^2 y}{d x^2}+\alpha^2 y=0$ No. of arbitrary constants = 2 So order → 2 So $\frac{dy}{dx}=α(-A\sin(αx)+\cos(αx))$ or $\frac{d^2y}{dx^2}=α^2(-A\sin(αx)-\cos(αx))$ $\frac{d^2y}{dx^2}=-α^2y$ or $\frac{d^2y}{dx^2}+α^2y=0$ |