CUET Preparation Today
CUET
-- Mathematics - Section B1
Vectors
Three vectors →a,→b,→c are such that →a×→b=3(→a×→c). Also, |→a|=|→b|=1,|→c|=13. If the angle between →b and →c is 60°, then |
→b=3→c+→a →b=3→c−→a →b=3→c+2→a →b=3→c−2→a |
→b=3→c+→a |
We have, →a×→b=3(→a×→c) ⇒→a×→b−→a×3→c=→0 ⇒→a×(→b−3→c)=→0 ⇒→a||→b−3→c ⇒\vec b-3\vec c=λ\vec a ⇒|\vec b-3\vec c|^2=λ^2|\vec a|^2 ⇒|\vec b|^2+9|\vec c|^2-6(\vec b.\vec c)=λ^2|\vec a|^2 ⇒2-6×\frac{1}{3}\cos 60° = λ^2 [∵|\vec a|=|\vec b|=1,|\vec c|=1/3\,and\,\vec b.\vec c=|\vec b||\vec c|\cos 60°] ⇒λ±1 Hence, \vec b-3\vec c=±\vec a ⇒\vec b=3\vec c + \vec a and \vec b = 3\vec c-\vec a. |