The function $f(x)=\cot^{-1}\sqrt{(x+3)x}+\cos^{-1}(\sqrt{x^2+3x+1})$ is defined on the set S, where S is equal to |
(−3, 0) [0, 3] [−3, 0] {−3, 0} |
{−3, 0} |
For the two components to be meaningful $(x +3)x ≥ 0$ and $0≤x^2+3x+1≤1$ Hence $(x + 3)x = 0 ⇒ x = 0, − 3$ |