Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

If $\int\limits_0^x f(t) d t=x+\int\limits_x^1 t f(t) d t$, then the value of $f(1)$, is

Options:

1/2

0

1

-1/2

Correct Answer:

1/2

Explanation:

We have,

$\int\limits_0^x f(t) d t=x+\int\limits_x^1 t f(t) d t$

$\Rightarrow \int\limits_0^x f(t) d t=x-\int\limits_1^x t f(t) d t$

$\Rightarrow \int\limits_0^x f(t) d t+\int\limits_1^x t f(t) d t=x$

Differentiating w.r. to $x$, we get

$f(x)+x f(x)=1 \Rightarrow f(x)=\frac{1}{x+1} \Rightarrow f(1)=\frac{1}{2}$