CUET Preparation Today
CUET
-- Mathematics - Section B1
Continuity and Differentiability
Let fθ=sin{tan−1(sinθ√cos2θ)}, where −π4<θ<π4. Then the value of dd(tanθ)(f(θ)), is
1
2
3
4
We have,
f(θ)=sin{tan−1(sinθ√1−2sin2θ)}
⇒f(θ)=sin{sin−1(sinθ√sin2θ+1−2sin2θ)}
⇒f(θ)=sin{sin−1(tanθ)}=tanθ
∴ dd(tanθ)(f(θ))=1