If X has a Poisson distribution such that $P(X=1)=4P(X=2),$ then $P(X=0)$ is : |
$e^{-\frac{1}{2}}$ $e^{-1}$ $e^{-2}$ $e^{\frac{1}{2}}$ |
$e^{-\frac{1}{2}}$ |
The correct answer is Option (1) → $e^{-\frac{1}{2}}$ The probability mass function (PMF) is, $P(X=k)=\frac{λ^ke^{-λ}}{k!}$ and, $P(X=1)=4P(X=2)$ $\frac{λ^1e^{-λ}}{1!}=\frac{λ^2e^{-λ}}{2!}⇒λ=\frac{1}{2}$ $P(X=0)=\frac{λ^0e^{-λ}}{0!}=e^{-λ}=e^{-\frac{1}{2}}$ |