If (x – a)2 + (y – b)2 = c2, for some c > 0, then the expression:$\frac{\begin{bmatrix}1+(\frac{dy}{dx})^2\end{bmatrix}^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$ equal to: |
c2 $c^{\frac{3}{2}}$ –c c |
–c |
(x – a)2 + (y – b)2 = c2, c > 0 .......(1) Differentiating both side.w.r.t.x $2(x – a) + 2(y – b)\frac{dy}{dx}=0$ ⇒ $\frac{dy}{dx}=\frac{-(x-a)}{y-b}$ ...(2) Differentiating again $\frac{d^2y}{dx^2}=\frac{(y-b)(-1)+(x-a).\frac{dy}{dx}}{(y-b)^2}$ ...(3) Putting value of $\frac{dy}{dx}$ from eq. (2) in eq. (3) $∴\frac{d^2y}{dx^2}=\frac{(y-b)(-1)+(x-a).\frac{-(x-a)}{y-b}}{(y-b)^2}$ $\frac{d^2y}{dx^2}=-[\frac{(y-b)^2)+(x-a)^2}{(y-b)^3}]=\frac{-c^2}{(y-b)^3}$ ...(4) Now, $\frac{[1+(\frac{dy}{dx})^2]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}=\frac{[1+(\frac{-(x-a)^2}{y-b})]^{\frac{3}{2}}}{\frac{-c^2}{(y-b)^3}}$ $=\frac{[\frac{1}{1}+\frac{(x-a)^2}{(y-b)^2}]^{\frac{3}{2}}}{\frac{-c^2}{(y-b)^3}}=\frac{[\frac{(y-b)^2+(x-a)^2}{(y-b)^2}]^{\frac{3}{2}}}{\frac{-c^2}{(y-b)^3}}=\frac{[\frac{c^2}{(y-b)^2}]^{\frac{3}{2}}}{\frac{-c^2}{(y-b)^3}}$ $=\frac{([\frac{c}{(y-b)}]^2)^{\frac{3}{2}}}{\frac{-c^2}{(y-b)^3}}=\frac{c^3}{(y-b)^3}×\frac{(y-b)^3}{-c^2}=-c$ |