If $A = \begin{bmatrix}2&1&3\\4&-3&5\end{bmatrix}$ and $B = \begin{bmatrix}-2&3\\4&-5\\1&2\end{bmatrix}$, then which of the following statements are TRUE? (A) AB is defined Choose the correct answer from the options given below: |
(A), (B) and (C) only (B), (C) and (D) only (A) and (C) only (A), (C) and (D) only |
(A) and (C) only |
The correct answer is Option (3) → (A) and (C) only Given matrices: \[ A = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -3 & 5 \end{bmatrix} \quad (2 \times 3) \] \[ B = \begin{bmatrix} -2 & 3 \\ 4 & -5 \\ 1 & 2 \end{bmatrix} \quad (3 \times 2) \] Check which products are defined:
Dimensions of products:
Calculate \(AB\): \[ AB = \begin{bmatrix} 2 & 1 & 3 \\ 4 & -3 & 5 \end{bmatrix} \times \begin{bmatrix} -2 & 3 \\ 4 & -5 \\ 1 & 2 \end{bmatrix} = ? \] Calculate each element:
\[ AB = \begin{bmatrix} 3 & 7 \\ -15 & 37 \end{bmatrix} \] Since \(AB \neq I\), option (B) is false. Check if \(AB = BA\): Since \(AB\) is \(2 \times 2\) and \(BA\) is \(3 \times 3\), they cannot be equal. Therefore, option (D) is false. Summary:
|