If $\left|\begin{array}{lll}a & b & 0 \\ 0 & a & b \\ b & 0 & a\end{array}\right|=0$ then : |
a is a cube root of 1 $b$ is a cube root of 1 $\frac{a}{b}$ is a cube root of 1 $\frac{a}{b}$ is a cube root of -1 |
$\frac{a}{b}$ is a cube root of -1 |
$\left|\begin{array}{lll} solving matrix $a\left|\begin{array}{ll} $=a\left(a^2\right)-b\left(-b^2\right)=0$ $a^3+b^3=0$ $a^3=-b^3$ $(a / b)^3=-1$ $a / b=(-1)^{1 / 3}$ a/b is cube root of -1 |