If X is a Poisson variable such that $P(X=1)=2P(X=2),$ then $P(X=3)$ is : |
$\frac{1}{e}$ $e$ $\frac{6}{e}$ $\frac{1}{6e}$ |
$\frac{1}{6e}$ |
The correct answer is Option (4) → $\frac{1}{6e}$ In a Poisson Distribution, the PMF is, $P(X=k)=\frac{e^{-λ}λ^k}{k!}$ and, $P(X=1)=2P(X=2)$ $⇒\frac{e^{-λ}λ^1}{1!}=2×\frac{e^{-λ}λ^2}{2!}$ $⇒λ=λ^2$ $⇒λ^2-λ=0$ $⇒λ(λ-1)=0⇒λ=1$ $∴P(X=3)=\frac{e^{-1}×1}{6}=\frac{1}{6e}$ |