Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Continuity and Differentiability

Question:

If $f(x)=\left\{x^2\right\}-(\{x\})^2$, where {.} denotes the fractional part function, then 

Options:

f(x) is continuous at x = 2 but not at x = -2

f(x) is continuous at x = -2 but not at x = 2

f(x) is continuous at x = 2 and x = -2

f(x) is discontinuous at x = 2 and x = -2

Correct Answer:

f(x) is continuous at x = 2 but not at x = -2

Explanation:

We have, f(x) = $\{x^2\} - (\{x\}^2)$

∴  $\lim\limits_{x \rightarrow 2^{-}} f(x)=\lim\limits_{h \rightarrow 0} f(2-h)$

$\Rightarrow \lim\limits_{x \rightarrow 2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left\{(2-h)^2\right\}-(\{2-h\})^2$

$\Rightarrow \lim\limits_{x \rightarrow 2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[(2-h)^2-\left[(2-h)^2\right]-((2-h)-[(2-h)])^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow 2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[(2-h)^2-3-(2-h-1)^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow 2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[4-4 h+h^2-3-\left(1-2 h+h^2\right)\right]=0$

$\lim\limits_{x \rightarrow 2^{+}} f(x)=\lim\limits_{h \rightarrow 0} f(2+h)$

$\Rightarrow \lim\limits_{x \rightarrow 2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left\{(2+h)^2\right\}-\{2+h\}^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow 2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left((2+h)^2-\left[(2+h)^2\right]\right)-((2+h)-[2+h])^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow 2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left(4+4 h+h^2-4\right)-(2+h-2)^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow 2^{+}} f(x)=\lim\limits_{h \rightarrow 0} 4 h=0$

and,  $f(2)=\left\{2^2\right\}-(\{2\})^2=0-0=0$

∴  $\lim\limits_{x \rightarrow 2^{-}} f(x)=\lim\limits_{x \rightarrow 2^{+}} f(x)=f(2)$

So, f(x) is continuous at x = 2

Now,

$\lim\limits_{x \rightarrow-2^{-}} f(x)=\lim\limits_{h \rightarrow 0} f(-2-h)$

$\Rightarrow \lim\limits_{x \rightarrow-2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left\{(-2-h)^2\right\}-(\{(-2-h)\})^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow-2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left((-2-h)^2-\left[(-2-h)^2\right]\right)-((-2-h)-[-2-h])^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow-2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[(-2-h)^2-4-(-2-h+3)^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow-2^{-}} f(x)=\lim\limits_{h \rightarrow 0}\left[4 h+h^2-(1-h)^2\right]=-1 $

$\lim\limits_{x \rightarrow-2^{+}} f(x)=\lim\limits_{h \rightarrow 0} f(-2+h)$

$\Rightarrow \lim\limits_{x \rightarrow-2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left\{(-2+h)^2\right\}-\{(-2+h)\}^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow-2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left((-2+h)^2-\left[(-2+h)^2\right]\right)-(-2+h-[-2+h])^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow-2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[\left((-2+h)^2-3\right)-(-2+h+2)^2\right]$

$\Rightarrow \lim\limits_{x \rightarrow-2^{+}} f(x)=\lim\limits_{h \rightarrow 0}\left[(-2+h)^2-3-h^2\right]=1$

∴  $\lim\limits_{x \rightarrow-2^{-}} f(x) \neq \lim\limits_{x \rightarrow-2^{+}} f(x)$

So, f(x) is not continuous at x = -2.