If $f: D \in R$ be such that $f(x)=\sqrt{\sin (\cos x)}+\ln \left(-2 \cos ^2 x+3 \cos x-1\right)$, then $\int\limits_{x_1}^{x_2}\left[\cos x-\frac{1}{2}\right] d x$ is equal to, where $x_1, x_2 \in D$ and [.] denotes the greatest integer function, |
0 $\frac{1}{2}\left(x_2-x_1\right)$ $x_1-x_2$ $\frac{1}{2}\left(x_1-x_2\right)$ |
0 |
Clearly, $\sqrt{\sin (\cos x)}$ is defined for all $x \in R$. $\ln \left(-2 \cos ^2 x+3 \cos x-1\right)$ is defined, if $-2 \cos ^2 x+3 \cos x-1>0$ $\Rightarrow 2 \cos ^2 x-3 \cos x+1<0$ $\Rightarrow (2 \cos x-1)(\cos x-1)<0$ $\Rightarrow \frac{1}{2}<\cos x<1$ $\Rightarrow 0<\cos x-\frac{1}{2}<\frac{1}{2} \Rightarrow\left[\cos x-\frac{1}{2}\right]=0$ ∴ $\int\limits_{x_1}^{x_2}\left[\cos x-\frac{1}{2}\right] d x=\int\limits_{x_1}^{x_2} 0 d x=0$ |