Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

If $f: D \in R$ be such that $f(x)=\sqrt{\sin (\cos x)}+\ln \left(-2 \cos ^2 x+3 \cos x-1\right)$, then $\int\limits_{x_1}^{x_2}\left[\cos x-\frac{1}{2}\right] d x$ is equal to, where $x_1, x_2 \in D$ and [.] denotes the greatest integer function,

Options:

0

$\frac{1}{2}\left(x_2-x_1\right)$

$x_1-x_2$

$\frac{1}{2}\left(x_1-x_2\right)$

Correct Answer:

0

Explanation:

Clearly, $\sqrt{\sin (\cos x)}$ is defined for all $x \in R$.

$\ln \left(-2 \cos ^2 x+3 \cos x-1\right)$ is defined, if

$-2 \cos ^2 x+3 \cos x-1>0$

$\Rightarrow 2 \cos ^2 x-3 \cos x+1<0$

$\Rightarrow (2 \cos x-1)(\cos x-1)<0$

$\Rightarrow \frac{1}{2}<\cos x<1$

$\Rightarrow 0<\cos x-\frac{1}{2}<\frac{1}{2} \Rightarrow\left[\cos x-\frac{1}{2}\right]=0$

∴  $\int\limits_{x_1}^{x_2}\left[\cos x-\frac{1}{2}\right] d x=\int\limits_{x_1}^{x_2} 0 d x=0$