If $x=\frac{\sqrt{5}-2}{\sqrt{5}+2}$, then the value of $x^2+x^{-2}$ is: |
350 345 284 322 |
322 |
If $x=\frac{\sqrt{5}-2}{\sqrt{5}+2}$ By rationalization $x=\frac{\sqrt{5}-2}{\sqrt{5}+2}$ × $\frac{\sqrt{5}-2}{\sqrt{5}-2}$ = 9 + 4\(\sqrt {5}\) x2 = (9 + 4\(\sqrt {5}\))2 = 161 + 72\(\sqrt {5}\) x-2 = 161 - 72\(\sqrt {5}\) $x^2+x^{-2}$ = 161 + 72\(\sqrt {5}\) + 161 - 72\(\sqrt {5}\) = 322 |