Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Algebra

Question:

If $x=\frac{\sqrt{5}-2}{\sqrt{5}+2}$, then the value of $x^2+x^{-2}$ is:

Options:

350

345

284

322

Correct Answer:

322

Explanation:

If $x=\frac{\sqrt{5}-2}{\sqrt{5}+2}$

By rationalization 

$x=\frac{\sqrt{5}-2}{\sqrt{5}+2}$ × $\frac{\sqrt{5}-2}{\sqrt{5}-2}$ = 9 + 4\(\sqrt {5}\)

x2 = (9 + 4\(\sqrt {5}\))2 = 161 + 72\(\sqrt {5}\)

x-2 = 161 - 72\(\sqrt {5}\)

$x^2+x^{-2}$ =  161 + 72\(\sqrt {5}\) + 161 - 72\(\sqrt {5}\) = 322