Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

$\lim\limits_{x \rightarrow \infty} \frac{\int\limits_0^{2 x} t e^{t^2} d t}{e^{4 x^2}}$ equals

Options:

0

2

$\frac{1}{2}$

Correct Answer:

$\frac{1}{2}$

Explanation:

We have,

$I=\lim\limits_{x \rightarrow \infty} \frac{\int\limits_0^{2 x} t e^{t^2} d t}{e^{4 x^2}}$             ($\frac{∞}{∞}$ form)

$\Rightarrow I=\lim\limits_{x \rightarrow \infty} \frac{2 \times 2 x e^{4 x^2}}{e^{4 x^2} \times 8 x}$                 [Using L' Hospital rule]

$\Rightarrow I=\lim\limits_{x \rightarrow \infty} \frac{1}{2}=\frac{1}{2}$