If $x^4 + \frac{1}{x^4} = 3842$, then the positive value of $x + \frac{1}{x}$ will be : |
12 8 10 6 |
8 |
We know that, If x4 + \(\frac{1}{x^4}\) = a then x2 + \(\frac{1}{x^2}\) = \(\sqrt {a + 2}\) = b and x + \(\frac{1}{x}\) = \(\sqrt {b + 2}\) So, If $x^4 + \frac{1}{x^4} = 3842$, then x2 + \(\frac{1}{x^2}\) = \(\sqrt {3842 + 2}\) = 62 and x + \(\frac{1}{x}\) = \(\sqrt {62 + 2}\) = 8 |