If Y = tan35°, then the value of (2tan 55° + cot 55° ) is : |
$\frac{2+y^2}{y}$ $\frac{2-y}{y^2}$ $\frac{2}{y^2}$ $\frac{2-y^2}{y}$ |
$\frac{2+y^2}{y}$ |
We know , tanA = cot ( 90º - A ) Now, 2tan 55° + cot 55° = 2cot 35° + tan 35° = 2\(\frac{1}{tan35°}\)+ tan 35° = 2\(\frac{1}{Y}\)+ Y { Y = tan 35° } = \(\frac{2 + Y²}{Y}\) |