If $\frac{\sec \theta-\tan \theta}{\sec \theta+\tan \theta}=\frac{3}{5}$, then the value of $\frac{{cosec} \theta+\cot \theta}{{cosec} \theta-\cot \theta}$ is : |
$24+\sqrt{15}$ $31+8 \sqrt{15}$ $27+\sqrt{15}$ $33+4 \sqrt{15}$ |
$31+8 \sqrt{15}$ |
\(\frac{secθ - tanθ}{secθ + tanθ}\) = \(\frac{3}{5}\) By using componendo and dividendo \(\frac{secθ }{ tanθ}\) = \(\frac{3 +5}{5 - 3}\) \(\frac{secθ }{ tanθ}\) = \(\frac{8}{2}\) \(\frac{1 }{sinθ}\) = \(\frac{4}{1}\) sinθ = \(\frac{1}{4}\) { sinθ = \(\frac{P}{H}\) } By using pythagoras theorem, P² + B² = H² 1² + B² = 4² B = \(\sqrt {15 }\) Now, \(\frac{cosecθ+ cotθ}{cosecθ- cotθ}\) = \(\frac{H+ B}{H- B}\) = \(\frac{4+ √15}{4- √15}\) = \(\frac{4+ √15}{4- √15}\) x \(\frac{4+ √15}{4+ √15}\) = (4+ √15)² = 16 + 15 + 8√15 = 31 + 8√15 |