$∫\frac{cosx-sinx}{1+sin2x}dx$ is equal to : |
$\frac{1}{sinx+cosx}+c,$ where C is a constant. $\frac{-1}{sinx+cosx}+c,$ where C is a constant. $\frac{1}{cosx-sinx}+c,$ where C is a constant. $\frac{2}{sinx+cosx}+c,$ where C is a constant. |
$\frac{-1}{sinx+cosx}+c,$ where C is a constant. |
The correct answer is Option (2) → $\frac{-1}{sinx+cosx}+c,$ where C is a constant. $∫\frac{\cos x-\sin x}{\cos^2x+\sin^2x+2\sin x\cos x}dx$ $1=\sin^2x+\cos^2x$ $\sin 2x=2\sin x\cos x$ $=∫\frac{(\cos x-\sin x)dx}{(\cos x-\sin x)^2}$ let $y=\cos x+\sin x$ $dy=(\cos x-\sin x)dx$ $⇒∫\frac{dy}{y^2}=\frac{-1}{y}+c$ $=\frac{-1}{sinx+cosx}+c$ |