If $\int\frac{x^4}{x-2}dx= px + qx^2 + rx^3+ sx^4+ t\log|x - 2|+ C$, where $C$ is an arbitrary constant and $p, q, r, s, t $ are real numbers, then the correct arrangement of $p, q, r, s, t$ is |
$p>q>r>s>t$ $q>r>p>t>s$ $r>t>s>p>q$ $t>p>q>r>s$ |
$t>p>q>r>s$ |
The correct answer is Option (4) → $t>p>q>r>s$ Given: $\int \frac{x^4}{x - 2} \, dx = px + qx^2 + rx^3 + sx^4 + t\log|x - 2| + C$ Use polynomial division: Divide $x^4$ by $(x - 2)$: $\begin{align*} &\frac{x^4}{x - 2} = x^3 + 2x^2 + 4x + 8 + \frac{16}{x - 2} \\ \Rightarrow\ &\int \frac{x^4}{x - 2} dx = \int (x^3 + 2x^2 + 4x + 8 + \frac{16}{x - 2}) dx \\ =\ &\frac{x^4}{4} + \frac{2x^3}{3} + 2x^2 + 8x + 16\log|x - 2| + C \end{align*}$ Comparing with: $px + qx^2 + rx^3 + sx^4 + t\log|x - 2| + C$ Match coefficients:
Descending order of $(p, q, r, s, t)$ is: ${t > p > q > r > s}$ |