For what value(s) of k is A = \(\begin{bmatrix}3k & 2 \\6 & k \end{bmatrix}\) is not a singular matrix |
-2 2 \(\mathbb R- \{-2,2\}\) None of these |
\(\mathbb R- \{-2,2\}\) |
Firstly we start by determining the values where the matrix will be singular. Finding the determinant and equating it to 0. \(3 { k }^{ 2 } - 12 = 0\) \(3 ({ k }^{ 2 } - 4) = 0\) \({ k }^{ 2 } - 4= 0\) \({ k }^{ 2 } = 4\) k =2 or -2 So excluding these values, the matrix will be non-singular for all real values of k |