A solid, metallic right circular cone of radius 7 cm and height 3 cm is melted into three cubes. If the sides of two cubes are 3 cm and 5 cm, then the side of the third cube will be how much? |
1 cm $\sqrt[3]{2}$ cm $\sqrt[3]{3}$ cm 3 cm |
$\sqrt[3]{2}$ cm |
The correct answer is Option (2) → $\sqrt[3]{2}$ cm $\text{Volume of cone} = \frac{1}{3} \pi r^2 h$ $= \frac{1}{3} \pi (7)^2 (3) = \frac{1}{3} \pi \cdot 49 \cdot 3 = 49\pi \ \text{cm}^3$ $\text{Volume of first cube (side = 3 cm)} = 3^3 = 27 \ \text{cm}^3$ $\text{Volume of second cube (side = 5 cm)} = 5^3 = 125 \ \text{cm}^3$ $\text{Let side of third cube be } x$ $\Rightarrow x^3 = 49\pi - 27 - 125 = 49\pi - 152$ Using $\pi \approx 3.14$: $x^3 = 49 \cdot 3.14 - 152 = 153.86 - 152 = 1.86$ $\Rightarrow x = \sqrt[3]{1.86} \approx 1.22 \ \text{cm}$ |