Let $F: R \rightarrow R$ be a thrice differentiable function. Suppose that $F(1)=0, F(3)=-4$ and $F'(x)<0$ for all $x \in(1 / 2,3)$. Let $f(x)=x F(x)$ for all $x \in R$. Then which of the following statements is (are) correct? (a) $f'(1)<0$ |
(a), (b) (a), (b), (c) (b), (c) (b), (c), (d) |
(a), (b), (c) |
We have, $f(x)=x F(x)$ for all $x \in R$ $\Rightarrow f'(x)=F(x)+x F'(x)$ for all $x \in R$ $\Rightarrow f'(1)=F(1)+F'(1)$ $\Rightarrow f'(1)=0+F'(1)=F'(1)<0\left[∵ F'(x)<0\right.$ for all $x \in\left(\frac{1}{2}, 3\right)\left.\right]$ So, statement (a) is correct. It is given that $F'(x)<0$ for all $x \in(1 / 2,3)$. So, F(x) is decreasing on the interval (1/2, 3). ∴ $F(2)<F(1)$ $\Rightarrow F(2)<0$ [∵ F(1) = 0] $\Rightarrow 2 F(2)<0$ $\Rightarrow f(2)<0$ [∵ f(x) = x F(x)] So, statement (b) is correct. Again $f(x)=x F(x)$ for all $x \in R$. $\Rightarrow f'(x)=F(x)+x F'(x)$ for all $x \in R$ Now, $F'(x)<0$ for all $x \in(1 / 2,3)$ $\Rightarrow F'(x)<0$ for all $x \in(1,3)$ and $F(x)$ is decreasing on $(1,3)$ $\Rightarrow F'(x)<0$ for all $x \in(1,3)$ and $F(x)<F(1)$ for all $x \in(1,3)$ $\Rightarrow F'(x)<0$ and $F(x)<0$ for all $x \in(1,3)$ $\Rightarrow F'(x)+x F(x)<0$ for all $x \in(1,3)$ $\Rightarrow f'(x)<0$ for all $x \in(1,3)$ $\Rightarrow f'(x) \neq 0$ for all $x \in(1,3)$ So, statement (c) is correct and statement (d) is incorrect. |