A radioactive element decays to 1/64th of its initial activity in 30 days. Its half life is: |
3 days 4 days 5 days 6 days |
5 days |
The correct answer is Option (3) → 5 days Using exponential decay law - $A(t)=A_0\left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$ and, $\frac{A(t)}{A_0}=\frac{1}{64}$ for $t=30$ days [given] $∴\frac{1}{64}=\left(\frac{1}{2}\right)^{\frac{30}{T_{1/2}}}$ $⇒\left(\frac{1}{2}\right)^6=\left(\frac{1}{2}\right)^{\frac{30}{T_{1/2}}}$ $⇒6=\frac{30}{T_{1/2}}$ $⇒T_{1/2}=5\,days$ |