Solution of the differential equation $x=1+x y \frac{d y}{d x}+\frac{(x y)^2}{2 !}\left(\frac{d y}{d x}\right)^2+\frac{(x y)^3}{3 !}\left(\frac{d y}{d x}\right)^3+...$ is |
$y=\log _e(x)+C$ $y=\left(\log _e x\right)^2+C$ $y= \pm \sqrt{\left(\log _e x\right)^2+2 C}$ $x y=x^y+k$ |
$y= \pm \sqrt{\left(\log _e x\right)^2+2 C}$ |
We have, $x=e^{x y \frac{d y}{d x}}$ $\Rightarrow \log x=x y \frac{d y}{d x}$ $\Rightarrow y d y=\frac{\log x}{x} d x \Rightarrow y d y=\log x d(\log x)$ On integrating, we get $\frac{y^2}{2} =\frac{(\log x)^2}{2}+C$ $\Rightarrow y^2 =\left(\log _e x\right)^2+2 C \Rightarrow y= \pm \sqrt{\left(\log _e x\right)^2+2 C}$ |