The differential equation of all circles which pass through the origin and whose centres lie on y-axis is : |
$\left(x^2-y^2\right) \frac{d y}{d x}-2 x y=0$ $\left(x^2-y^2\right) \frac{d y}{d x}+2 x y=0$ $\left(x^2-y^2\right) \frac{d y}{d x}-x y=0$ $\left(x^2-y^2\right) \frac{d y}{d x}+x y=0$ |
$\left(x^2-y^2\right) \frac{d y}{d x}-2 x y=0$ |
If (0, a) is centre on y-axis, then its radius is a because it passes through origin. ∴ Equation of circle is $x^2+(y-a)^2=a^2$ $\Rightarrow x^2+y^2-2 ay=0$ .......(1) $\Rightarrow 2 x+2 y \frac{d y}{d x}-2 a \frac{d y}{d x}=0$ .......(2) Using (1) in (2), $2 x+2 y \frac{d y}{d x}-\frac{x^2+y^2}{y} \frac{d y}{d x}=0$ $\Rightarrow 2 x y=\left(x^2+y^2-2 y^2\right) \frac{d y}{d x}$ $\Rightarrow \frac{d y}{d x}=\frac{2 x y}{x^2-y^2}$ Hence (1) is the correct answer. |