CUET Preparation Today
CUET
-- Mathematics - Section B1
Indefinite Integration
The equation of a curve passing through the point (0,1) be given by y=∫x2.ex3dx. If the equation of the curve be written in the form x=f(y), then f(y)= |
√loge(3y−2) 3√loge(3y−2) 3√loge(2−3y) none of these |
3√loge(3y−2) |
We have, y=∫x2ex3dx=13∫ex3d(x3)=13ex3+C It passes through (0,1). Therefore, 1=13+C⇒C=23 ∴ y=13ex3+23 ⇒3y=ex3+2 ⇒ex3=3y−2⇒x3=loge(3y−2)⇒x=3√loge(3y−2) |