The refractive index of an equilateral prism is $\sqrt{3}$. The angle of incidence for which angle of deviation is minimum is: |
30° 60° 45° 15° |
60° |
The correct answer is Option (2) → 60° Relationship between the refraction index (μ) of the material and angle of minimum deviation - $μ=\frac{\sin\left(\frac{A+S_{min}}{2}\right)}{\sin\left(\frac{A}{2}\right)}$ In equilateral prism, Angle of Prism (A) = 60° $μ=\sqrt{3}$ [given] $\sqrt{3}=\frac{\sin\left(\frac{60°+S_{min}}{2}\right)}{\sin\left(\frac{60°}{2}\right)}$ $\sqrt{3}=2\sin\left(\frac{60°+S_{min}}{2}\right)$ $⇒\frac{60°+S_{min}}{2}=\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$ $⇒\frac{60°+S_{min}}{2}=60°$ $⇒S_{min}=60°$ |