Target Exam

CUET

Subject

Physics

Chapter

Ray Optics

Question:

The refractive index of an equilateral prism is $\sqrt{3}$. The angle of incidence for which angle of deviation is minimum is:

Options:

30°

60°

45°

15°

Correct Answer:

60°

Explanation:

The correct answer is Option (2) → 60°

Relationship between the refraction index (μ) of the material and angle of minimum deviation -

$μ=\frac{\sin\left(\frac{A+S_{min}}{2}\right)}{\sin\left(\frac{A}{2}\right)}$

In equilateral prism, Angle of Prism (A) = 60°

$μ=\sqrt{3}$ [given]

$\sqrt{3}=\frac{\sin\left(\frac{60°+S_{min}}{2}\right)}{\sin\left(\frac{60°}{2}\right)}$

$\sqrt{3}=2\sin\left(\frac{60°+S_{min}}{2}\right)$

$⇒\frac{60°+S_{min}}{2}=\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$

$⇒\frac{60°+S_{min}}{2}=60°$

$⇒S_{min}=60°$