If the line $\frac{-x+1}{3}=\frac{-y-2}{-2k}=\frac{z+3}{2}$ and $\frac{-1+x}{3k}=\frac{-1+ y}{1}=\frac{-z+6}{5}$ are perpendicular, then the value of $k$ is: |
$\frac{10}{7}$ $-\frac{10}{7}$ $\frac{1}{2}$ $\frac{4}{3}$ |
$-\frac{10}{7}$ |
The correct answer is Option (2) → $-\frac{10}{7}$ First line: $-\frac{x+1}{3}=\frac{-y-2}{-2k}=\frac{z+3}{2}=t$ $x=-3t-1,\quad y=2kt-2,\quad z=2t-3$ Direction ratios: $(-3,\;2k,\;2)$ Second line: $\frac{-1+x}{3k}=\frac{-1+y}{1}=\frac{-z+6}{5}=s$ $x=3ks+1,\quad y=s+1,\quad z=-5s+6$ Direction ratios: $(3k,\;1,\;-5)$ Condition for perpendicularity: $(-3)(3k)+(2k)(1)+(2)(-5)=0$ $-9k+2k-10=0$ $-7k-10=0$ $k=-\frac{10}{7}$ |