A current $I$ flows in a circular loop of radius $r$. The magnetic field at a point on its axis at distance $r$ from the center of the loop is |
$\frac{μ_0I}{2\sqrt{2}r}$ $\frac{μ_0I}{4\sqrt{2}r}$ $\frac{μ_0I}{8\sqrt{2}πr}$ $\frac{μ_0I}{316\sqrt{2}πr}$ |
$\frac{μ_0I}{4\sqrt{2}r}$ |
The correct answer is Option (2) → $\frac{μ_0I}{4\sqrt{2}r}$ Given: Current in circular loop: $I$ Radius of loop: $r$ Point on axis at distance $x = r$ from center Magnetic field on axis of circular loop: $B = \frac{\mu_0 I r^2}{2 (r^2 + x^2)^{3/2}}$ Substitute $x = r$: $B = \frac{\mu_0 I r^2}{2 (r^2 + r^2)^{3/2}} = \frac{\mu_0 I r^2}{2 (2 r^2)^{3/2}} = \frac{\mu_0 I r^2}{2 (2^{3/2} r^3)}$ $B = \frac{\mu_0 I}{2 \cdot 2^{3/2} r} = \frac{\mu_0 I}{2 \cdot 2 \sqrt{2} r} = \frac{\mu_0 I}{4 \sqrt{2} r}$ Answer: $B = \frac{\mu_0 I}{4 \sqrt{2} r}$ |