Let $L_1$ and $L_2$ be two lines, represented as, $L_1:\vec r=\hat i+\hat j+λ(2\hat i-\hat j+\hat k)$ and $L_2:\vec r = 2\hat i + \hat j − \hat k + μ(4\hat i - 2\hat j + 2\hat k)$, where $λ$ and $μ$ are scalars. Then which of the following are true? (A) $L_1$ is perpendicular to $L_2$ Choose the correct answer from the options given below: |
(A) and (D) only (B), (C) and (D) only (C) and (D) only (A) and (C) only |
(B), (C) and (D) only |
The correct answer is Option (2) → (B), (C) and (D) only L1: $\vec{r} = \hat{i} + \hat{j} + \lambda(2\hat{i} - \hat{j} + \hat{k})$ L2: $\vec{r} = 2\hat{i} + \hat{j} - \hat{k} + \mu(4\hat{i} - 2\hat{j} + 2\hat{k})$ Direction vector of L1: $\vec{d}_1 = \langle 2, -1, 1 \rangle$ Direction vector of L2: $\vec{d}_2 = \langle 4, -2, 2 \rangle$ $\vec{d}_2 = 2 \cdot \vec{d}_1 \Rightarrow$ L1 and L2 are parallel ⟹ (B) is true Check perpendicularity: $\vec{d}_1 \cdot \vec{d}_2 = 2 \cdot 4 + (-1) \cdot (-2) + 1 \cdot 2 = 8 + 2 + 2 = 12 \ne 0$ ⟹ (A) is false Check if L1 passes through (1, 1, 0): Point on L1 when $\lambda = 0$ is $(1, 1, 0)$ ⟹ (C) is true Check if L2 passes through (2, 1, -1): Point on L2 when $\mu = 0$ is $(2, 1, -1)$ ⟹ (D) is true |