If a sum of money becomes \(\frac{11}{8}\) times in 7.5 years at simple rate of interest, then at the same rate of interest it will becomes \(\frac{19}{12}\) times in: |
9 years 4 months 12 years 3 months 10 years 9 months 11 years 8 months |
11 years 8 months |
Let principal be P and rate be R, Amount = P(1 + \(\frac{7.5R}{100}\)) ⇒ \(\frac{11}{8}\)P = P(1 + \(\frac{7.5R}{100}\)) ⇒ \(\frac{11}{8}\) = 1 + \(\frac{7.5R}{100}\) ⇒ \(\frac{7.5R}{100}\) = \(\frac{3}{8}\) ⇒ R = 5 Now, ⇒ \(\frac{19}{12}\) = P(1 + \(\frac{5T}{100}\)) ⇒ \(\frac{19}{12}\) = 1 + \(\frac{5T}{100}\) ⇒ T = \(\frac{35}{3}\) = 11 years 8 months |