Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Applications of Derivatives

Question:

The interval on which the function $f(x) = x^3 + 2x^2-1$ is decreasing, is

Options:

$(-∞,-4/3)$

$[0,∞)$

$[-4/3,0)$

$[-4/3,∞)$

Correct Answer:

$[-4/3,0)$

Explanation:

The correct answer is Option (3) → $[-4/3,0)$

Given: $f(x) = x^3 + 2x^2 - 1$

Find $f'(x)$:

$f'(x) = 3x^2 + 4x$

Set $f'(x) < 0$ for decreasing interval:

$3x^2 + 4x < 0$

$x(3x + 4) < 0$

Solution: $x \in [-\frac{4}{3}, 0)$