The maximum ordinate of a point on the graph of the function $f(x)=\sin x(1+\cos x)$, is |
$\frac{2+\sqrt{3}}{4}$ $\frac{3 \sqrt{3}}{4}$ 1 none of these |
$\frac{3 \sqrt{3}}{4}$ |
We have, $f(x) =\sin x(1+\cos x)$ $\Rightarrow f(x) =\sin x+\frac{1}{2} \sin 2 x$ $\Rightarrow f'(x)=\cos x+\cos 2 x$ and $f''(x)=-\sin x-2 \sin 2 x$ For local maximum or minimum, we must have $f'(x)=0$ $\Rightarrow \cos x+\cos 2 x=0$ $\Rightarrow 2 \cos ^2 x+\cos x-1=0$ $\Rightarrow (2 \cos x-1)(\cos x+1)=0$ $\Rightarrow \cos x=\frac{1}{2},-1 \Rightarrow x=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$ Now, $f''\left(\frac{\pi}{3}\right)=-\sin \frac{\pi}{3}-2 \sin \frac{2 \pi}{3}<0, f''(\pi)=0$ and, $f''\left(\frac{5 \pi}{3}\right)=-\sin \frac{5 \pi}{3}-2 \sin \frac{10 \pi}{3}>0$ Thus, f(x) attains a local maximum at $x=\frac{\pi}{3}$ ∴ Maximum ordinate = $f\left(\frac{\pi}{3}\right)=\sin \frac{\pi}{3}\left(1+\cos \frac{\pi}{3}\right)$ $=\frac{\sqrt{3}}{2} \times \frac{3}{2}=\frac{3 \sqrt{3}}{4}$ |