The value of $\lambda$ and $\mu$ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=\vec{0}$ are respectively: |
$3, \frac{27}{2}$ $-\frac{27}{2}, 3$ $-1, \frac{11}{3}$ $-\frac{5}{3}, \frac{7}{3}$ |
$3, \frac{27}{2}$ |
The correct answer is Option (1) - $3, \frac{27}{2}$ $\begin{vmatrix}\hat i&\hat j&\hat k\\2&6&27\\1&λ&μ\end{vmatrix}$ $⇒(6μ-27λ)\hat i+(-2μ+27λ)\hat j+(2λ-6)\hat k=\vec 0$ so $2λ=6$, $2μ=27$ $λ=3$, $μ=\frac{27}{2}$ |