Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Linear Programming

Question:

Match List I with List II

LIST I LIST II
A. If the corner points of the feasible region for an LPP are 90, 4), (5, 0), (7, 9), then the minimum value of the objective function Z = 5x + 8y, is I. 27
B. If the corner points of the feasible region for an LPP are (0,0), (0, 2) ,(3, 4), (5, 3), then the maximum value of the objective function Z=3x+4y II. 60
C. The corner points of the feasible region for an LPP are (0, 2), (1, 2), (4, 3), (7, 0). The objective function is Z+ x+5y . Then (Max Z+ Min Z) is. III. 25
D. If the corner points of the feasible region for an LPP are (0, 4), (3, 0), ( 3, 2), (6, 9). The objective function is Z=2x+6y. Then (Max Z - Min Z) IV. 26

Choose the correct answer from the options given below :

Options:

A-III, B-IV, C-I, D-II

A-III, B-I, C-IV, D-II

A-IV, B-III, C-II, D-I

A-I, B-III, C-IV, D-II

Correct Answer:

A-III, B-I, C-IV, D-II

Explanation:

The correct answer is Option (2) → A-III, B-I, C-IV, D-II

(A) $Z=5x+8y$

$Z(5,0)=5×5+8×0$

$=25$ is minimum value

(B) $Z=3x+4y$

$Z(5,3)_{max}=3×5+4×3=27$

(C) $X=x+5y$

$Z_{max}(4,3)=4+5×3=19$

$Z_{min}(7,0)=7$

$∴Z_{max}+Z_{min}=19+7=26$

(D) $Z=2x+6y$

$Z_{max}(6,9)=2×6+6×9=66$

$Z_{min}(3,0)=2×3+6×0=6$

$Z_{max}-Z_{min}=60$