Consider the LPP, Max Z = x + y, subject to the conditions x + y ≤ 3, x - y ≥ 1 x ≥ 0, y ≥ 0, then which of the following is not the corner point of the feasible region of above LPP. |
(1, 0) (2, 1) (0, 3) (3, 0) |
(0, 3) |
The correct answer is Option (3) → (0, 3) $x + y ≤ 3$ or $\frac{x}{3}+\frac{y}{3}≤ 3$ $x - y ≥ 1$ or $\frac{x}{1}-\frac{y}{1}≥ 1$ $x, y ≥ 0$ intersection of eq. (1) → $x+y=3$ eq. (2) → $x-y=1$ eq. (1) + eq. (2) $⇒x=2$ so $y=1$ so (0, 3) is not a corner point |