The solution of the differential equation $\log_e \left(\frac{dy}{dx}\right)=5x+2y$ is given by |
$5e^{5x}+2e^{-2y}+C=0$: C is an arbitrary constant $2e^{5x}+5e^{-2y}+C=0$: C is an arbitrary constant $2e^{-5x}+5e^{2y}+C=0$: C is an arbitrary constant $5e^{-5x}+2e^{2y}+C=0$: C is an arbitrary constant |
$2e^{5x}+5e^{-2y}+C=0$: C is an arbitrary constant |
The correct answer is Option (2) → $2e^{5x}+5e^{-2y}+C=0$: C is an arbitrary constant Given: $\log_e\left(\frac{dy}{dx}\right) = 5x + 2y$ Take exponential both sides: $\frac{dy}{dx} = e^{5x + 2y} = e^{5x} \cdot e^{2y}$ Separate variables: $\frac{dy}{e^{2y}} = e^{5x} dx$ Integrate both sides: $\int e^{-2y} dy = \int e^{5x} dx$ Left side: $\int e^{-2y} dy = \frac{-1}{2} e^{-2y}$ Right side: $\int e^{5x} dx = \frac{1}{5} e^{5x}$ So: $\frac{-1}{2} e^{-2y} = \frac{1}{5} e^{5x} + C$ Multiply both sides by 10: $-5e^{-2y} = 2e^{5x} + 10C$ Bring all terms to one side: $2e^{5x} + 5e^{-2y} + C = 0$ (absorbing $10C$ into arbitrary constant $C$) |