A gaussian surface encloses three point charges $q_1 = -14 nC ; q_2 = 78.85 nC$ and $q_3=-56 nC$. The electric flux for the gaussian surface due to these charges is |
$1000\, Nm^2\, C^{-1}$ $7885\, Nm^2\, C^{-1}$ $885\, Nm^2\, C^{-1}$ $1400\, Nm^2\, C^{-1}$ |
$1000\, Nm^2\, C^{-1}$ |
The correct answer is Option (1) → $1000\, Nm^2\, C^{-1}$ According to Gauss's law, the total electric flux through a closed surface: $\Phi_E = \frac{Q_{\text{enclosed}}}{\varepsilon_0}$ Total charge enclosed: $Q_{\text{enclosed}} = q_1 + q_2 + q_3 = (-14 + 78.85 - 56)\ \text{nC} = 8.85\ \text{nC} = 8.85 \times 10^{-9}\ \text{C}$ Electric flux: $\Phi_E = \frac{8.85 \times 10^{-9}}{8.85 \times 10^{-12}} = 10^3 \ \text{Nm}^2/\text{C}$ Electric flux through the Gaussian surface = $1.0 \times 10^3 \ \text{Nm}^2/\text{C}$ |