The equation of tangent to the curve $x= a cos^3t, y =a\, sin^3t$ at t is : |
$xsect + y \, cosec t=a$ $xsect - y \, cosec t=a$ $xcosect + y \, sec t=a$ $xcosect - y \, sec t=a$ |
$xsect + y \, cosec t=a$ |
The correct answer is option (1) → $x\sec t+y\,cosec\,t=a$ $x= a \cos^3t, y =a\sin^3t$ $\frac{dx}{dt}=-3\cos^2y\sin t$, $\frac{dy}{dt}=3a\sin^2t\cos t$ so $\frac{dy}{dx}=\frac{-\sin t}{\cos t}$ so eq. → $y-a\sin^3t=\frac{-\sin t}{\cos t}(x-a\cos^3t)$ $y\,cosec\,t-a\sin^2t=a\cos^2t-x\sec t$ $x\sec t+y\,cosec\,t=a$ |