A proton and a deuteron execute circular orbits having same radii of 0.5 m in a plane perpendicular to a uniform magnetic field B. If the kinetic energy of the deuteron is 50 keV, the K.E. of the proton will be |
200 keV 100 keV 50 keV 25 keV |
100 keV |
The correct answer is Option (2) → 100 keV Radius of orbit: $r = \frac{mv}{qB}$ For same radius $r$ and same $q, B$: $\frac{v_p}{v_d} = \frac{m_d}{m_p}$ Deuteron mass $m_d \approx 2m_p$ $\frac{v_p}{v_d} = 2$ Kinetic energy, $K = \frac{1}{2}mv^2$ $\frac{K_p}{K_d} = \frac{\frac{1}{2}m_p v_p^2}{\frac{1}{2}m_d v_d^2}$ $\frac{K_p}{K_d} = \frac{m_p (2v_d)^2}{2m_p v_d^2}$ $\frac{K_p}{K_d} = \frac{4}{2} = 2$ $K_p = 2K_d = 2 \times 50 \ \text{keV}$ $K_p = 100 \ \text{keV}$ Answer: 100 keV |