If the solution of differential equation $\frac{dy}{dx}=\frac{ax +3}{2y+5}$ represents a circle, then $a$ is equal to: |
3 -2 -3 5 |
-2 |
The correct answer is Option (2) → -2 $\frac{dy}{dx}=\frac{ax +3}{2y+5}$ $⇒\int (2y+5)dy=\int (ax +3)dx$ $⇒y^2+5y=\frac{a}{2}x^2+3x+C$ for the equation to represent a circle, $x^2+y^2+bx+Ey+F=0$ $≡y^2+5y-\frac{a}{2}x^2-3x-C=0$ $⇒-\frac{a}{2}=1$ $⇒a=-2$ |