If the $y=8^{log}2^x, $ then $\frac{d^2y}{dx^2}$ is : |
$2x$ 1 $3x^2$ $6x$ |
$6x$ |
The correct answer is Option (4) → $6x$ Using property of exponents $a^{\log_bx}=x^{\log_ba}$ $∴y=8^{\log_2x}=x^{\log_28}$ $y=x^3$ $(∵\log_28=3)$ Differentiate, $\frac{dy}{dx}=3x^2$ Differentiating again, $\frac{d^2y}{dx^2}=\frac{d}{dx}(3x^2)$ $=6x$ |