If $x+y+z=3, x y+y z+z x=-12$ and $x y z=-16$, then the value of $\sqrt{x^3+y^3+z^3+13}$ is: |
9 8 10 11 |
10 |
Given, x + y + z = 3, xy + yz + zx = -12 and xyz = -16 We know, x3 + y3 + z3 – 3xyz = (x + y + z) [(x + y + z)2 – 3(xy + yz + zx)] So, x3 + y3 + z3 – 3xyz = (x + y + z) [(x + y + z)2 – 3(xy + yz + zx)] = x3 + y3 + z3 – 3 (-16) = 3 [(3)2 – 3(-12)] = x3 + y3 + z3 + 48 = 3(9 + 36) = x3 + y3 + z3 + 48 = 3(45) = x3 + y3 + z3 + 48 = 135 = x3 + y3 + z3 = 87 $\sqrt{x^3+y^3+z^3+13}$ = $\sqrt{87+13}$ = 10 |