Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Application of Integrals

Question:

The area of the region bounded by parabola $x^2 = 4y$, straight line $x = 2$ and x-axis, is

Options:

$\frac{4}{3}$ Sq. units

$\frac{2}{3}$ Sq. units

1 Sq. units

$\frac{5}{3}$ Sq. units

Correct Answer:

$\frac{2}{3}$ Sq. units

Explanation:

The correct answer is Option (1) → $\frac{2}{3}$ Sq. units

Given: Parabola $x^2 = 4y$, line $x = 2$, and x-axis ($y = 0$)

Rewrite the parabola: $y = \frac{x^2}{4}$

Required area: Area under parabola from $x = 0$ to $x = 2$

$\text{Area} = \int_0^2 \frac{x^2}{4}\, dx = \frac{1}{4} \int_0^2 x^2\, dx = \frac{1}{4} \cdot \left[\frac{x^3}{3}\right]_0^2$

$= \frac{1}{4} \cdot \left( \frac{8}{3} \right) = \frac{2}{3}$