The area of the region bounded by parabola $x^2 = 4y$, straight line $x = 2$ and x-axis, is |
$\frac{4}{3}$ Sq. units $\frac{2}{3}$ Sq. units 1 Sq. units $\frac{5}{3}$ Sq. units |
$\frac{2}{3}$ Sq. units |
The correct answer is Option (1) → $\frac{2}{3}$ Sq. units Given: Parabola $x^2 = 4y$, line $x = 2$, and x-axis ($y = 0$) Rewrite the parabola: $y = \frac{x^2}{4}$ Required area: Area under parabola from $x = 0$ to $x = 2$ $\text{Area} = \int_0^2 \frac{x^2}{4}\, dx = \frac{1}{4} \int_0^2 x^2\, dx = \frac{1}{4} \cdot \left[\frac{x^3}{3}\right]_0^2$ $= \frac{1}{4} \cdot \left( \frac{8}{3} \right) = \frac{2}{3}$ |