If the sum and product of the mean and variance of a binomial distribution are 18 and 72 respectively, then the probability of obtaining atmost one success is |
$25\left(\frac{1}{2}\right)^{24}$ $\left(\frac{1}{2}\right)^{24}$ $24\left(\frac{1}{2}\right)^{24}$ $24\left(\frac{1}{2}\right)^{23}$ |
$25\left(\frac{1}{2}\right)^{24}$ |
The correct answer is Option (1) → $25\left(\frac{1}{2}\right)^{24}$ In Binomial distribution, Mean = $np$ Variance = $np(1-p)$ Let, $x=np$ and $y=np(1-p)$ given, $x+y=18$ ...(1) $xy=72$ ...(2) $⇒x^2-18t+72=0$ $⇒(x-12)(x-6)=0$ $x=12$ or 6 $y=6$ or 12 Case 1: $np=12,np(1-p)=6$ $12(1-p)=6$ $⇒p=\frac{1}{2}⇒n=24$ $∴P(X≤1)=P(0)+P(1)$ $={^nC}_kP^k(1-P)^{n-k}$ $={^{24}C}_0(\frac{1}{2})^0(\frac{1}{2})^{24}+{^{24}C}_1(\frac{1}{2})^1(\frac{1}{2})^{23}$ $=(\frac{1}{2})^{24}+24×(\frac{1}{2})^{24}$ $=\frac{25}{2^{24}}$ |