Let $f(x)=\left\{\begin{array}{lll}{[x]+1} & x \neq n \pi & n \in I \\ 3 & & \text { otherwise }\end{array}\right.$ , the $\lim\limits_{x \rightarrow 0^+}(f(x))$ is, (where [.] denotes the greatest integer function) |
1 2 3 4 |
1 |
$\lim\limits_{x \rightarrow 0^{+}} f(x)=[0]+1 = 1$ Hence (1) is the correct answer. |