If $C(x)=\frac{1}{3}x^3+x^2-15x+3000$ is the cost function then the minimum value of marginal cost function is : |
14 -14 -16 -18 |
-16 |
The correct answer is Option (3) → -16 The Marginal Cost function is, $MC(x)=\frac{d}{dx}C(x)=\frac{d}{dx}\left(\frac{1}{3}x^3+x^2-15x+3000\right)$ $=x^2+2x-15$ for critical point, $f'(c)=0$ $⇒2x+2=0$ $⇒x=-1$ $∴MC(-1)=(-1)^2+2(-1)-15$ $=-16$ → Minimum Value |