The maximum value of $Z= 3x+y $ subject to the constraints $x+y ≤ 30, 2x+ y ≤40, x, y ≥0$ is |
50 30 25 20 |
20 |
The correct answer is Option (4) → 20 Cost function = $C(x)=x^3-60x^2+13x+50$ $MC(x)=C'(x)=3x^2-120x+13$ for a quardritic function, $ax^2+bx+c$, the vertix occurs at $x=-\frac{b}{2a}=\frac{-120}{-2×3}=20$ |